
53 

Acta Cryst. (1957). 10, 53 

Asymmetric  Electron Diffraction Pattern from Molybdenite 
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The electron diffraction pa t te rn  from the cleavage surface (0001) of molybdeni te  is asymmetr ic  
across the plane of incidence when the plane is parallel to the glide plane (1010). By  this  a s y m m e t r y  
one can dist inguish the sense of the polar axis of the first S-Mo-S layer  on the boundary  surface, 
i.e. one finds the polar i ty  of a non-centrosymmetr ie  layer  in a centrosymmetr ic  crystal.  This is a 
more glaring contradict ion to the results of the kinematical  theory  than  the failure of Friedel 's  law 
because Friedel 's  law is concerned only wi th  the polar i ty  of a non-centrosymmetr ic  crystal.  An 
explanat ion of the phenomenon is given by the dynamical  theory,  and the relation between the 
phenomenon and failure of Friedel 's  law is discussed. 

1. I n t r o d u c t i o n  

Previously, Miyake & Uyeda (1950) reported an ex- 
ception to Friedel's law in electron diffraction patterns 
from zincblende. Kohra, Uyeda & Miyake (1950) and 
Kohra (1954) explained this phenomenon by the 
dynamical theory of electron diffraction. Recently, 
Niehrs (1955) and Miyake & Uyeda (1955) examined 
the validity of Friedel's law in the dynamical theory 
from a more general point of view. They made it 
clear that  Friedel's law does not always hold, even 
when no anomalous dispersion takes place. 

In the present paper we report a new phenomenon 
which is found in the electron diffraction pattern from 
the cleavage surface of molybdenite. The phenomenon 
is remarkable because it enables us to distinguish the 
sense of the polar axes of the first S-Mo-S layer on 
the boundary surface, i.e. by the phenomenon we can 
distinguish the polarity of a non-centrosymmetric 
layer in a centrosymmetric crystal (Fig. 1). This is 
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Fig. 1. The unit pattern of a S-Mo--S layer in molybdenit~. 
Arrows: twofold polar axes of the layer. Solid lines: 
mirror planes of the crystal, parallel to (1150). Broken 
lines: c-glide planes of the crystal, parallel to (10i0). 

clearly a more glaring contradiction to the result of the 
kinematical theory than the failure of Friedel's law, 
because by the failure of Friedel's law only the polarity 
of a non-centrosymmetric crystal as a whole is distin- 
guished. We explain the new phenomenon by the 
dynamical theory and discuss the relation between this 
phenomenon and the failure of Friedel's law. 

2. E x p e r i m e n t  

We have studied electron diffraction patterns from the 
cleavage surface (0001) of molybdenite (MoS2) by the 
reflexion method (Fig. 2). The space group of molyb- 
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Fig. 2. Geometrical arrangement of the experiment. In this 
illustration the plane of incidence is (10i0) in which the 
asymmetry is observed. 

denite is D4h-P63/mmc and the kinematical theory 
predicts patterns symmetric across the centre line, 
when the_plane of incidence is parallel to the glide 
plane (1010) or the mirror plane (1120) (Fig. 1). 
Contrary to the_prediction, we observed an asymmetric 
pattern in (1010) (Fig. 3(a)), while we observed a 
symmetric pattern in (1120) (Fig. 3(c)). To make clear 
the asymmetric feature of Fig. 3(a), it is illustrated 
in Fig. 3 (b) somewhat exaggerated. The rotation photo- 
graph in (1010) also shows asymmetry (Fig. 3(d)). 
Although the asymmetry is not so remarkable as to be 
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Fig. 3. Reflcxion patterns from the cleavage surface of molybdenite. 

(a) Asymmetric pattern in plane of incidence (101()) (stationary crystal). 
(b) Illustration of the asymmetry (compare the two parts indicated by broken lines). 
(c) Symmetric pattern in plane of incidence (1120) (stationary crystal). 
(d) Asymmetric pattern in plane of incidence (10i0) (rotating crystal). 
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recognized at a glance, it cannot be overlooked. The 
asymmetry  is not due to any mis-setting of azimuth, 
because the azimuth was most carefully adjusted in 
every case by observing the geometry of the Kikuchi 
pattern. 

Previously, Kainuma & Uyeda (1950) found that  an 
extra pat tern is superposed on the molybdenite pat- 
tern, indicating an organic substance adsorbed on the 
cleavage surface of molybdenite. In the present ex- 
per /me,  t, too, the extra pat tern was sometimes ob- 
served, as seen in Figs. 3(c) and 3(d).* However, it 
was confirmed that  the asymmetry is not influenced 
at  all by the superposition of the extra pattern, in- 
dicating that  the asymmetry  is caused by the molyb- 
denite crystal itself. 

The asymmetric pat tern in (10i0) cannot be under- 
stood by a kinematical theory, because the absolute 
value of the structure amphtude of (hOfzl) is equal to 
tha t  of (f~Ohl). The asymmetry  does not mean a 
failure of Friedel's law, because the molybdenite 
crystal has a center of symmetry.  However, each single 
layer of S-Mo-S in molybdenite has no center of sym- 
metry. I t  is trigonal, being_symmetric across (1120) 
but  asymmetric across (1010). We ascertained by 
experiment that  the asymmetric pat tern changes from, 
say, left-handed to right-handed by rotating the 
crystal through 60 ° about the c axis. Since this result 
is in accordance with the trigonal symmetry of the 
S-Mo-S layer, we believe that  the observed asym- 
metry  is directly related to the polarity of the layer 
on the boundary surface. Thus the sense of the polar 
axis of the uppermost layer of the crystal can be 
distinguished by observing the asymmetry.  

Since two adjacent layers in the molybdenite struc- 
ture have opposite polarities, the asymmetric pat tern 
should change its sense when one S-Mo-S layer is 
peeled off the surface. Therefore, to observe the 
asymmetry,  the cleavage surface used must be so 
perfect that  it has no steps over the area irradiated 
by the incident beam. I t  has been shown previously 
by an experiment of oriented overgrowth of gold 
crystals that  only good cleavage surfaces of molyb- 
denite have no steps over a macroscopic area (Kainuma, 
1951). If the samples used were not good enough, the 
asymmetry  could not have been observed because of 
steps. 

The detailed behavior of the asymmetry  is some- 
what complicated. This arises mainly from the com- 
plicated diffraction process itself, but  in part  it is due 
to the inevitable bending of the specimens; even for 
stationary crystals the bending causes diffraction pat- 
terns more or less resembling rotation photographs. 

3. Interpretation by the dynamical  theory 

In  this section the observed asymmetry is treated by 
the dynamical theory, without taking into account the 

* The extra pattern disappears when the crystal is heated 
to about 150 ° C. 

effect of absorption. For the exact t reatment  of the 
phenomenon, we must take into account many dif- 
fracted waves which are coupled with one another. 
Since such a t reatment  is rather difficult, and since 
our observation is only qualitative, we treat  here the 
problem qualitatively on the simplest assumption. 
This is sufficient for proving that  the asymmetry does 
occur and that  the sense of the asymmetry is reversed 
by peeling one layer of S-Mo-S off the surface. 

Let us assume, according to the experimental con- 
dition, tha t  the incident beam falls upon the cleavage 
surface of molybdenite at grazing incidence in the 
(10i0) plane (Fig. 2). The sphere of reflexion inter- 
sects on a circle the plane which contains reciprocal 
lattice points of the type (h0~l) (Fig. 4). Let us t reat  
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Fig. 4. Reciprocal lattice of molybdenite. 

the case where eight lattice points Pl(hO~p), 
P~ (h,O,fi,p- 1), Pa(hOfzq), P4(h,O,fi,q- 1), .P~ (f~Ohp), 
P~(ft,O,h,p-1), P~(ftOhq) and P~(~,O,h,q-1) lie near 
the sphere. In Fig. 4 h = 1, p = 9 and q = 3. 

We can calculate the amplitudes um of the diffracted 
waves inside the crystal by the fundamental equation 
of the dynamical theory (Bethe, 1928): 

2 2 (z0-km)um+..~,'v~um_~ = O, (1) 
R 

where* 
~ = (2m/h2)(E÷eVo), vn = (2me/hg)Vn, (2) 

km = k0+hm. (3) 

In (1) ~ '  is the sum over n except n = (000). In  (2) 
n 

E is the kinetic energy of the incident electrons, V o 
the mean inner potential and V~ the nth :Fourier 
coefficient of the crystal potential field. In (3) k 0 is 
the wave vector of the primary wave inside the crystal 
and h m the vector corresponding to the ruth reciprocal- 
lattice point. 

* The notation used in this section is the same as that 
used in our previous paper (Miyake & Uyeda, 1955). 
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We assume as an approximation tha t  only the 
primary wave is strong, the eight diffracted waves 
weak, and all the other diffracted waves negligible. 
Then we can calculate the amplitudes of the eight 
waves by neglecting all the terms in the summation 
in (1) except V,nU o. Thus the amplitudes become 

u~ = -vs /Qs ,  us = -v'8/Qs, (e = 1, 2, 3, 4) ,  (4) 

where ~ denotes the suffixes of the reciprocal-lattice 
points Ps or P~ and the prime indicates the quantities 
relating to the points Pj. The coefficient u 0 is normal- 
ized to uni ty and, according to the geometrical con- 
dition, Q~ is given by 

Qs ~ 2 2 2 ' 2  = ( ~ 0 - k s )  . (5)  = ( ~ o - k s )  

The wave field inside the crystal is represented by 

uc = c¢ {exp [2~i (k 0 . r)] + ~ '  us exp [2~i (k s. r)] 
8 

+ ~  u~ exp [2~i(k~.r)]}, (6) 
s 

and the wave field outside the crystal by 

u~ = A exp [2~i(K0.r)J+R exp [2~i(K.r)]  

+ R '  exp [2~ i (K ' . r ) ] ,  (7) 

where K 0 is the wave vector of the incident wave and 
K and K' are those of the diffracted waves. Since all 
the ks have the same tangential component, only one 
diffracted wave with the wave vector K appears in a 
vacuum (Lamla, 1938; Laue, 1948). Similarly, also for 
kj  only one diffracted wave with K' appears. 

The amplitudes a, R and/~ '  are determined by the 
conditions 

u~ = uv,  ~uJ~z = ~uv/~z (8) 

• 0  ~ ~ 0 ~  

r = r , ~ r ~ = r i ~ r ~ = r ; ~ - r ~ = - r ~ - r , = - r ~ .  (11) 

Then R and R '  follow as 

R = A ( u 1 + u ~  ), R ' =  A(u '~+u~) .  (12) 

In these equations the amplitudes u3, u4, u~ and u~ do 
not appear, only u~, u~., U'l and u'~ appearing. This is 
justified physically because the amplitudes R and/~ ' ,  
which are reflected from the crystal, are mainly 
determined by the amplitudes of waves which prop- 
agate outward in the crystal, and are little influenced 
by waves which propagate inward in the crystal. 

To examine the relation between R and R '  the 
relation between corresponding v's is required. Since 
(1010) is a glide plane, we have a general relation 

Vho~ = (-1)~v~0~ (13) 

provided the origin lies on the glide plane. Therefore, 
we obtain by (4) the relation 

p t u 1 = ( - 1 )  ul, u~. = ( - l f - ~ u ~  (14) 

where p is tha t  p in the index Pl(hO~p) .  Substi tuting 
(14) into (12), we finally obtain 

R = A(Ul+tt~.), R '  = + A ( u l - m  ) , (15) 

where the two signs correspond to even and odd p. 
The absolute values [R[ and [R'[ are not equal, im- 
plying tha t  the asymmetry  appears for both even and 
odd p. 

In deriving (15) we have assumed tha t  the boundary 
surface passes the coordinate origin. If the boundary 
surface passes a distance d from the origin, (15) is 
replaced by 

on the boundary surface, where z is the coordinate 
normal to the surface. We first assume that  the 
boundary surface passes through the origin of the 
coordinate. Then continuity of the wave function is 
expressed as 

A = ~, R = ~ u  s, R'  = ~ u ~ ,  (9) 
8 3 

and the continuity of the derivative as 

A = ~(ro/ro) ,  1¢ = ~ ( 1 / r ) 2  ysus, 
8 

R' = ~ (1 / r ' ) _~  ~;u ; ,  
3 

( 1 0 )  

where ~0, /'0, etc. are the normal components of 
k0, K0, etc. Thus we are given six equations for 
three unknowns. This paradox is due to our rough 
approximation, and we must follow some conventional 
way. For this purpose we take the mean of the cor- 
responding equations in (9) and (10) and, for the sake 
of simplicity, we use approximate relations 

R = A { u l + u  2 exp [2,'zi(d/c)]), 

R '  = ± A { U l - U ~  exp [2x~i(d/c)]} . ! (16) 

I t  should be noted tha t  the phases of structure 
factors which influence the phases of u 1 and u 2 depend 
on the position of the coordinate origin. Let us first 
assume tha t  the origin lies. on a mid-plane between 
adjacent S-Mo-S layers. Then (15) represents the re- 
flected amplitudes from a cleavage plane because a 
cleavage should occur on a mid-plane between the 
layers. Let  us next  assume tha t  one S-Mo-S layer is 
peeled off the surface. Then, the reflected amplitudes 
are given by (16) with d = ~-c. Since in this case the 
phase factor in (16) is - 1 ,  we can conclude tha t  R 
and R'  in (15) are equal to R'  and R, respectively, 
in (16). This implies tha t  the asymmetry  is reversed 
by peeling off one layer. 

According to (15) or (16), the asymmetry  occurs 
only when the amplitudes ul and u2 of two adjacent 
Bragg reflexions are of the same order of magnitude. 
I t  vanishes when either amplitude vanishes. Therefore, 
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Fig. 5. Diagram illustrating amplitudes of (331) and (331) reflexions from zincblende (see explanation in the text). (a) Rea 
resonance defect, with no coupling. (b) Complex resonance defect, with no coupling. (c) Complex resonance defect, with 
coupling. 

the asymmetry can be observed only when the inten- 
sity of reflexion does not vanish even at the middle 
of two adjacent Bragg reflexions. This condition is 
satisfied for molybdenite mainly by virtue of the large 
spacing of the cleavage plane. We can see on the rota- 
tion photograph (Fig. 3(d)) that, in fact, the reflexions 
are strong almost continuously between successive 
Bragg reflexions. 

Concerning the validity of the above theoretical 
result, there may arise a doubt that  the above treat- 
ment over-simplifies the actual situation to such an 
extent as to derive trivial conclusions. We can prove, 
however, that  the same equation as (15) can be derived 
in a more exact treatment in which four reflexions 
corresponding to P1, P~., P'I and P'2 are assumed 
strong and all possible dynamical couplings among 
them are taken into account. However, we do not 
work out such a treatment here because the increased 
mathematical complication does not lead to any better 
physical understanding of the observed asymmetry. 

4 .  D i s c u s s i o n  

The explanation of the asymmetry observed for 
molybdenite gives a better understanding of the cause 
of the failure of Friedel's law for zincblende, because 
both phenomena are related intimately to each other. 
In this section the cause of the failure of Friedel's law 
is discussed, together with the cause of the occurrence 
of the molybdenite-type asymmetry. 

Let us first consider the failure of Friedel's law for 
zincblende. According to Miyake & Uyeda (1950), the 
diffraction pattern is asymmetric when an incident 
wave falls upon the cleavage face (110) of zincblende 
in the plane of incidence (001); for example, the in- 
tensities of (331) and (331) are asymmetric. The 
physical meaning of the theoretical explanation of the 

phenomenon (Kohra et al., 1950; Kohra, 1954; 
Miyake & Uyeda, 1955) can be summarized as follows: 

The structure factors of (331) and (331) are complex 
conjugate to each other provided the origin of coor- 
dinates is chosen at the position of a zinc or sulphur 
atom. If there were no coupling between two reflexions, 
each amplitude would be given by the corresponding 
structure factor divided by the resonance defect.* 
When the resonance defect is real, the amplitudes of 
both reflexions are represented by vectors OA and OA' 
in the complex plane (Fig. 5(a)), r/ being the phase 
factor of (331). When, however, the resonance defect 
is complex, occurring in the range of total reflexion of 
the Bragg case, the amplitude is rotated away from 
the direction of the structure-factor vector through 
the phase angle c~ of the resonance defect. As the 
resonance defects of (331) and (331) are the same in 
the present case, the two amplitudes are rotated by 

in the same sense, resulting in OB and OB' (Fig. 5 (b)). 
Actually, however, there is coupling between (331) and 
(331), i.e. (331) is again reflected by (005), resulting 
in a new component OC' of (33i), and similarly (33i) 
is again reflected by (002), resulting in a new com- 
ponent OC of (331). The new components are also 
subjected to rotation through the phase angle a. I t  is 
thus evident that  the final amplitudes OD and OD' 

of (331) and (331), given by the vector sums of the 
original and new components, are different in their 
absolute values (Fig. 5(c)). This implies that  the dif- 
fraction pattern is asymmetric and Friedel's law fails. 

From the above consideration we can say that  the 
failure of Friedel's law is caused by the interference 
between the new and the original components. The inter- 
ference occurs inside the crystal and we can say tha t  

* See (4) of the present paper; for more exactness, see (29} 
of our previous paper (Miyake & Uyeda, 1955). 
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Friedel 's  law has al ready failed inside the crystal. Thus 
the a symmet ry  is independent  of the position of the 
boundary  surface (Kohra, 1954). Since, as will be 
referred to later, there are other causes for the failure 
of Friedel 's  law, we call the above cause the f irst  cause 
of the failure. The failure due to this  cause occurs 
under  the two conditions tha t :  (1) the coupling struc- 
ture factors do not vanish, and (2) the reflexions are 
in the range of total  reflexions. 

Next,  let us re turn  to the molybdeni te- type  asym- 
metry.  In  this case the cause of the a symmet ry  is 
the interference between two crystal waves which have the 
same tangential component. The interference occurs out- 
side the crystal  when the crystal  waves having the 
same tangent ia l  component  are unified. Thus the 
feature of a symmet ry  depends on the position of the 
boundary  surface. This a symmet ry  can occur even 
with a vanishing coupling structure factor and even 
outside the region of total  reflexions. However, i t  
cannot occur in the Laue case because the s imultancous 
excitat ion to considerable intensities is never possible 
for two diffracted waves having the same tangent ia l  
component.  

Miyake & Uyeda  (1955, § 6) have pointed out t ha t  
in addit ion to the first cause there is the second cause 
of the failure of Friedel 's  law. The second cause is also 
the result  of the interference between crystal  waves 
having the same tangent ia l  component.  The inter- 
ference process in this case is similar  to tha t  in the 
molybdeni te- type  asymmetry ,  but  with the difference 
tha t  in the former the wave vectors having the same 
tangent ia l  component  belong to different wave points 
and are directed toward the same reciprocal-lattice 
point, while in the lat ter  they  belong to the same wave 
point  and are directed toward different reciprocal- 
lattice points. 

Final ly ,  let us examine whether or not  the molyb- 
denite- type a symmet ry  can occur for non-centro- 
symmetr ic  crystals. This is worth examining because, 
if the a symmet ry  can occur even only in principle, 
we have the third cause of failure of Friedel 's  law. 
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Fig. 6. Schematic illustration of the molybdenite-like model 
crystal. 

For  zincblende it  can be proved tha t  no a symmet ry  
can occur provided the cleavage takes place on a mid- 
plane between two adjacent  (110) atomic planes. In  
order to give an example  in which the a symmet ry  
occurs, let us consider, for example,  a model crystal  
whose structure is molybdenite- l ike but  in which all 
the molybdenum atoms on al ternate  layers are re- 
placed by  X atoms other than  molybdenum (Fig. 6). 
This model crystal  is evident ly  polar. For the Fourier  
coefficients of this  s tructure we have the relation 

l * Vh0~l = (--1) V~0hl, (13') 

corresponding to (13) for molybdenite .  Therefore, 
under  the same geometrical condition of the incident  
beam as for molybdeni te  (§ 3), we obtain, in place of 
(14), the relations 

Ul = ( - I~Pu  '* J 1 , u9 = (-1)P-lu'2 * ,  (14') 

and, in place of (15), the relations 

R = A(ul+ug) ,  R '  = ± A ( u * - u * ) ;  (15') 

since IRI is not  equal  to IR'I, the  a symmet ry  occurs. 
Thus the molybdeni te- type  a symmet ry  can be the 
th i rd  cause of the failure of Friedel 's  law. 

5. Conclusion 

In  electron diffraction, asymmetr ic  pat terns  some- 
t imes appear in violation of the rule of symmet ry  
derived from the kinemat ica l  theory. The failure of 
Friedel 's  law, described in detail  in the previous paper  
(Miyake & Uyeda,  1955), is a remarkable  example  of 
such violation. In  the present paper  another  example  
of a more glaring violation is described and a theoret- 
ical explanat ion of it is given. I t  has been made clear 
tha t  violations are essentially the effect of dynamica l  
interference. 
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